
freeRADIUS
A High Performance, Open Source, Pluggable, Scalable

(but somewhat complex)

RADIUS Server

Aurélien Geron, Wifirst, january 7th 2011

vendredi 21 janvier 2011

Roadmap
• Multiple protocoles :

RADIUS, EAP...

• An Open-Source
(GPLv2) server

• A powerful configu-
ration system

• Many expansion
modules

• Writing your own
modules

Source image: http://crshare.com/abstract-backgrounds-vector-clipart/

vendredi 21 janvier 2011

Organization
• The configuration lives in files located in

/etc/freeradius and its subdirectories (on other systems
than Debian, it lives in /etc/raddb)

• For this presentation, we will cut the configuration in five
parts:

• Configuration of the RADIUS dictionary

• Basic configuration of the server

• Request management policies configuration

• Modules configuration

• Roaming configuration

vendredi 21 janvier 2011

Organization
• The configuration lives in files located in

/etc/freeradius and its subdirectories (on other systems
than Debian, it lives in /etc/raddb)

• For this presentation, we will cut the configuration in five
parts:

• Configuration of the RADIUS dictionary

• Basic configuration of the server

• Request management policies configuration

• Modules configuration

• Roaming configuration

vendredi 21 janvier 2011

The RADIUS dictionary

• Reminder: the name and type of the attributes are not actually
sent as such in RADIUS packets, only their number and value

• It would be a pain to have to configure freeRADIUS (or any
RADIUS client or server) using only attribute numbers

• This is why freeRADIUS (and virtually all RADIUS softwares)
use a dictionary that allows you to associate a name and a type
to each attribute number, and then use the human-readable
name in the rest of the configuration

vendredi 21 janvier 2011

The RADIUS dictionary
• The file /etc/freeradius/dictionary is the entry

point to the definition of the RADIUS dictionary used
throughout the freeRADIUS configuration

• By default, it just contains one single line (plus some
comments) which includes the standard dictionary:

$INCLUDE /usr/share/freeradius/dictionary

• The standard dictionary file simply includes many dictionaries:

• If you wish to add attribute definitions for your own attributes,
you should modify /etc/freeradius/dictionary, but never
modify any /usr/share/freeradius/dictionary.*

$INCLUDE dictionary.rfc2865
$INCLUDE dictionary.rfc2866
$INCLUDE dictionary.rfc2867
...
$INCLUDE dictionary.cisco.bbsm
$INCLUDE dictionary.clavister
...

vendredi 21 janvier 2011

The RADIUS dictionary
• For example, here is the beginning of the dictionary that

defines the attributes of RFC 2865:
-*- text -*-
#
Attributes and values defined in RFC 2865.
http://www.ietf.org/rfc/rfc2865.txt
#
ATTRIBUTE User-Name 1 string
ATTRIBUTE User-Password 2 string encrypt=1
ATTRIBUTE CHAP-Password 3 octets
ATTRIBUTE NAS-IP-Address 4 ipaddr
ATTRIBUTE NAS-Port 5 integer
ATTRIBUTE Service-Type 6 integer
ATTRIBUTE Framed-Protocol 7 integer
ATTRIBUTE Framed-IP-Address 8 ipaddr
ATTRIBUTE Framed-IP-Netmask 9 ipaddr
ATTRIBUTE Framed-Routing 10 integer
ATTRIBUTE Filter-Id 11 string
ATTRIBUTE Framed-MTU 12 integer
ATTRIBUTE Framed-Compression 13 integer
ATTRIBUTE Login-IP-Host 14 ipaddr
ATTRIBUTE Login-Service 15 integer
ATTRIBUTE Login-TCP-Port 16 integer
Attribute 17 is undefined
ATTRIBUTE Reply-Message 18 string
ATTRIBUTE Callback-Number 19 string
...

Type of
cipher

algorithm

vendredi 21 janvier 2011

http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc2865.txt

The RADIUS dictionary
• For some attributes, the possible values are numbered, and

what is actually sent in the RADIUS packets is that number
(not the name of the value).

• The association between the name of the value and its
number can be configured in the dictionary. You can then use
the name instead of the number in the rest of the config.

• For example, dictionary.rfc2865 contains the definition
of the possible values for the Framed-Compression
attribute (attribute number 13) :

...
Framed Compression Types
VALUE Framed-Compression None 0
VALUE Framed-Compression Van-Jacobson-TCP-IP 1
VALUE Framed-Compression IPX-Header-Compression 2
VALUE Framed-Compression Stac-LZS 3
...

vendredi 21 janvier 2011

The RADIUS dictionary
• Finally, in the case of Vendor-Specific attributes, the

vendor’s number (assigned by the IANA) is sent in the RADIUS
packets (not the vendor’s name).

• Again, the dictionary allows you to associate each vendor’s name
with its number, so you can then use the vendor’s name
everywhere in the configuration, instead of its number

• For example, here’s what Cisco’s dictionary looks like, defined in
dictionary.cisco (Cisco’s IANA number is 9):

VENDOR Cisco 9

BEGIN-VENDOR Cisco

ATTRIBUTE Cisco-AVPair 1 string
ATTRIBUTE Cisco-NAS-Port 2 string
...
VALUE Cisco-Disconnect-Cause Session-End-Callback 102
VALUE Cisco-Disconnect-Cause Invalid-Protocol 120

END-VENDOR Cisco

vendredi 21 janvier 2011

Organization
• The configuration lives in files located in

/etc/freeradius and its subdirectories (on other systems
than Debian, it lives in /etc/raddb)

• For this presentation, we will cut the configuration in five
parts:

• Configuration of the RADIUS dictionary

• Basic configuration of the server

• Request management policies configuration

• Modules configuration

• Roaming configuration

vendredi 21 janvier 2011

Configuration syntax
• The file /etc/freeradius/radiusd.conf is the entry

point for all freeRADIUS configuration (except for the
dictionary configuration).

• Its syntax is fairly simple, it is just composed of:

• variable definitions (ex: prefix = /usr)

• module names (ex: ldap), alone on a line

• and sections (ex : authenticate { ... }) which
can contain all the above, as well as subsections
(recursively)

• ...plus comments, which can occur anywhere:
a comment, up to the end of the line

vendredi 21 janvier 2011

$INCLUDE

• You can include a file at any point in the configuration using
the $INCLUDE keyword.

• You may also include a whole directory: all the files whose
name only contains letters, numbers, dots (.), and underscores
(_) will be included.

• This is how freeRADIUS’s configuration is spread across many
files, including all the files in /etc/freeradius/modules and
/etc/freeradius/sites-enabled, as well as many files
located in /etc/freeradius.

• This organization is a lot clearer than that of version 1.

vendredi 21 janvier 2011

The variables
• The values of the variables can be given with or without

single or double quotes:
exec_prefix = /usr
exec_prefix = '/usr' # is equivalent
exec_prefix = "/usr" # again, equivalent

• The value of a variable may be used later in the configuration
to define another variable, using the syntax ${var}:

sbindir = ${exec_prefix}/sbin

• This substitution only occurs upon freeRADIUS startup
(there is no runtime performance cost)

• The definition must fit on one line, or it must end with a
backslash:

name = "my name is ve\
ry long" # name = "my name is very long"

vendredi 21 janvier 2011

The sections
• The syntax is simple:

name_of_the_section { # compulsory carriage return here
 ...
} # must be on its own line (not counting spaces and comments)

• In some predefined cases that we will see later, a second name
may (or must) follow the first section name, for example:

...
authenticate {
 ...
 Auth-Type CHAP {
 ...
 }
 ...
}
...

vendredi 21 janvier 2011

radiusd.conf
• Here’s the start of the default content of radiusd.conf:

prefix = /usr
exec_prefix = /usr
sysconfdir = /etc
localstatedir = /var
sbindir = ${exec_prefix}/sbin
logdir = /var/log/freeradius
raddbdir = /etc/freeradius
radacctdir = ${logdir}/radacct
name = freeradius
confdir = ${raddbdir}
run_dir = ${localstatedir}/run/${name}
db_dir = ${raddbdir}
libdir = /usr/lib/freeradius
pidfile = ${run_dir}/${name}.pid
#chroot = /path/to/chroot/directory

user = freerad
group = freerad

max_request_time = 30
cleanup_delay = 5
max_requests = 1024

#...

Paths to the main directories and files
(usually, they do not need to be changed)

Un*x user and group that the server will run
as (should usually not be changed)

A few performance parameters that can be
tweaked, depending on the load of the server
(see the comments in radiusd.conf for
more details)

vendredi 21 janvier 2011

listen sections
• By default, freeRADIUS listens on all the server’s IP addresses

(that is, it listens on the wildcard address), and on the default
RADIUS ports (which are 1812 for authentication and
authorization, and 1813 for accounting)

• You may change this in the listen sections of radiusd.conf

#...
listen {
 type = auth
 ipaddr = 10.1.2.3
 port = 0 # zero means use standard port (1812 for auth)
}
listen {
 type = acct
 ipaddr = 10.1.2.3
 port = 2001 # here, we chose to use a non-standard port for accounting
}
#...

• You may add as many listen sections as needed
vendredi 21 janvier 2011

listen sections
• Possible options for a listen section:

listen {
 type = auth # Type of service (see below)
 ipaddr = * # For IPv4 (here we listen on all IP addresses)
ipv6addr = :: # For IPv6 (same as above, listen on all IPs)
 port = 0 # Use the standard port for the service
interface = eth0 # You may specify the interface to listen on
clients = per_socket_clients # Only listen to requests from a list of clients
virtual_server = my_policy # Handle requests using a specific policy handled
 # by a named virtual server (we willl come back
 # to this later)

• Here are the possible types of services:

auth Authentification and authorization
acct Accounting
proxy Allows you to specify the source IP and source port used by the server
when it proxies requests to another RADIUS server
detail Used to synchronize redundant RADIUS servers. This functionality replaces
the old «radrelay» daemon of version 1.
status Listens to Status-Server requests, sent by the «radadmin» tool
coa For CoA-Request and Disconnect-Request packets (see later)

vendredi 21 janvier 2011

listen sections

• See sites-available/copy-acct-to-home-server for
an example that uses the detail type

• See sites-available/status for an example that uses
the status type

• See sites-available/originate-coa for an example
that uses the coa type

vendredi 21 janvier 2011

radiusd.conf (cont’d)
...

hostname_lookups = no
allow_core_dumps = no
regular_expressions = yes
extended_expressions = yes

security {
 max_attributes = 200
 reject_delay = 1
 status_server = no
}

thread pool {
 start_servers = 5
 max_servers = 32
 min_spare_servers = 3
 max_spare_servers = 10
 max_requests_per_server = 0
}

log {
 destination = files
 file = ${logdir}/radius.log
 syslog_facility = daemon
 stripped_names = no
 auth = no
 auth_badpass = no
 auth_goodpass = no
}

...

Activate or deactivate reverse DNS (for
logs), core dumps and regular expressions
(see later)

Some counter-measures against a few
well-known security attacks

Threads management

Logs management

vendredi 21 janvier 2011

radiusd.conf (cont’d)
#...

checkrad = ${sbindir}/checkrad

proxy_requests = yes
$INCLUDE proxy.conf

$INCLUDE clients.conf

modules {
 $INCLUDE ${confdir}/modules/
 $INCLUDE eap.conf
$INCLUDE sql.conf
$INCLUDE sql/mysql/counter.conf
$INCLUDE sqlippool.conf
}

instantiate {
 exec
 expr
daily
 expiration
 logintime
}

$INCLUDE policy.conf

$INCLUDE sites-enabled/

Roaming configuration

Modules configuration

Force instanciation of modules (see later)

Definitions of the virtual servers
(they handle the requests) and their
policies

NAS configuration

This tool can query a NAS to check whether a
user is connected or not

vendredi 21 janvier 2011

clients.conf
• Configuration of all the NAS that will talk to the server

client localhost {
 ipaddr = 127.0.0.1
 secret = testing123
}

client meeting-room.wifi.wifirst.fr {
 shortname = wifi_meeting

 ipaddr = 10.1.9.4
ipv6addr = ::
netmask = 32

 secret = "hEin/geo9c$be3Eet.ugh3le0eH"

 require_message_authenticator = yes

 nastype = cisco

virtual_server = politique_stricte

coa_server = coa
}

To run tests from the server itself

The shortname is used to reference this
NAS from the rest of the configuration.
By default, it is the name stated at the
beginning of the section.

Defaults to «no». It is best to set this to
«yes» if the NAS supports it.

An excellent secret is compulsory

Used by the checkrad tool in order to
known how to query the NAS

The NAS IP address or a subnet
containing one or more NAS

This allows a specific policy to be applied
for this NAS

CoA : see later

vendredi 21 janvier 2011

Organization
• The configuration lives in files located in

/etc/freeradius and its subdirectories (on other systems
than Debian, it lives in /etc/raddb)

• For this presentation, we will cut the configuration in five
parts:

• Configuration of the RADIUS dictionary

• Basic configuration of the server

• Request management policies configuration

• Modules configuration

• Roaming configuration

vendredi 21 janvier 2011

Request handling

NAS
?

List of attributes
Request

ResponseAccess-Accept
or

Access-Reject List of attributes

What follows is
slightly simplified, we’ll

go into details later

vendredi 21 janvier 2011

NAS lookup

Find NAS by IP

• A NAS is always looked up by the source IP
address of the RADIUS packet

• If the NAS is not found, the packet is ignored

• All NAS configuration is loaded when freeRADIUS
starts up, it is entirely static

If you want to add, modify or delete a
NAS, you need to restart freeRADIUS

vendredi 21 janvier 2011

Internal lists of attributes
request control reply

Find NAS by IP

...+

Parse request
attributes

Msg-Authenticator=...

User-Password=G!5#%d

User-Name=NT\alain

• Notes:

• The control attributes are sometimes called
«config items»

• There are a few other lists: proxy-request, proxy-
response, outer.request, outer.reply, coa, etc.

vendredi 21 janvier 2011

Authorization phase
request control reply

Find NAS by IP Msg-Authenticator=...

User-Password=G!5#%d

User-Name=NT\alain

...

Parse request
attributes

List of modules

/etc/freeradius/sites-enabled/default

authorize {
 preprocess
 files
 pap
}

Authorization

vendredi 21 janvier 2011

preprocess module
request control reply

Find NAS by IP Msg-Authenticator=...

User-Password=G!5#%d

User-Name=alain

...

Authorization
authorize {
 preprocess
 files
 pap
}

Parse request
attributes

preprocess

This module fixes
a few well-known attribute
oddities (ex: strip the NT
domain from the User-

Name)

=

Il also handles
hints and
huntgroups
(see later)

authorize

vendredi 21 janvier 2011

files module
request control reply

Find NAS by IP Msg-Authenticator=...

User-Password=G!5#%d

User-Name=alain

...

Authorization
authorize {
 preprocess
 files
 pap
}

Parse request
attributes

files

This module applies
the rules defined in the
users file to add or

modify attributes

Cleartext-Password=abc Reply-Message=Hi alain!

+

Filter-ID=web_only

...

authorize

vendredi 21 janvier 2011

One moment please!
The files and preprocess modules are important...
let’s look at them a little closer before we come back

to the request handling logic

vendredi 21 janvier 2011

users file
• The files module reads the /etc/freeradius/users

file which contains rules to add, delete or modify attributes
in the control and reply attributes lists

• This file is composed of a list of rules, each having the
following format:

login condition1, condition2, ..., control_operation1, control_operation2,...
 reply_operation1,
 reply_operation2,
 ...

• Example :

alain Huntgroup-Name == "switch7_ports_1_a_12", Cleartext-Password := "abc"
 Reply-Message = "Hi alain!",
 Filter-ID = "web_only"

all control operations on
the first lineone reply operation per line

Tab (not
spaces)

Do not forget the commas

vendredi 21 janvier 2011

users rules processing

• The file is read in order, until a rule is found whose login
field matches the user’s login (from the User-Name
attribute) and whose conditions are all met (or else,
freeRADIUS just continues to try to find a matching rule)

• As soon as a matching rule is found, its operations are
executed: attributes are added, deleted or modified in the
control and/or reply lists, then the module exits

• Note: in the freeRADIUS documentation, the conditions
and the operations on the control list attributes are both
called «check items»

vendredi 21 janvier 2011

Conditions format
• Each condition applies to an attribute in the request list

(or the control list if it is not found in the request list)

• The conditions are formatted as follows:
attribute operator value

• The possible operators are:
==

!=

>

>=

<

<=

=~

!~

=*

!*

equal to

not equal to

strictly greater than (only for integer attributes)

greater or equal to (only for integer attributes)

strictly lower than (only for integer attributes)

lower or equal to (only for integer attributes)

matches the regular expression (only for string and text attributes)

does not match the regular expression (only for string and text attributes)

is present (the value is ignored, you can write attr =* yes for example)

is not present (again, the value is ignored)
vendredi 21 janvier 2011

Operations format
• To add or modify an attribute in the control or reply

lists, the syntax is once again:
attribute operator value

• The possible operators are:

 =

:=

+=

adds the attribute set to the given value, or does nothing if the attribute
already exists

adds the attribute set to the given value, overwriting the existing value if
the attribute already exists

adds the attribute set to the given value, even if it already exists (the same
attribute may then appear multiple times in the RADIUS packet)

• Warning: don’t confuse =, := and ==
It must be clear to you that the operations (=, := and +=)
are only executed if the login matches and if the
conditions (==, >=...) are all met

vendredi 21 janvier 2011

Fall-Through attribute
• By default, as soon as the files module finds a matching rule, it

applies its operations then exits

• But you can tell it to continue to go through the rules, simply by
adding Fall-Through=Yes at the end of the rule, after the end
of the list of reply attributes (note that this attribute is not
added to the reply attributes list)

• Example:

alain Cleartext-Password := "abc"
 Reply-Message = "Hi alain!",
 Fall-Through = Yes

alain Huntgroup-Name == "switch7_ports_1_to_12"
 Filter-ID = "web_only"

alain Huntgroup-Name == "switch7_ports_13_to_24"
 Filter-ID = "voip_only"

Condition on the location and
connection port (see later)

Filtering that the NAS should apply

alain’s passord is always «abc» and the
welcome message is always «Hi alain!»

vendredi 21 janvier 2011

DEFAULT login
• If you write DEFAULT instead of the user’s login, then the

rule is applied for all users, provided the conditions are all
met

• Example:

DEFAULT
 Reply-Message = "Hi %{User-Name}!",
 Fall-Through = Yes

DEFAULT Huntgroup-Name == "switch7_ports_1_a_12"
 Filter-ID = "web_only",
 Fall-Through = Yes

DEFAULT Huntgroup-Name == "switch7_ports_13_a_24"
 Filter-ID = "voip_only",
 Fall-Through = Yes

alain Cleartext-Password := "abc"

pierre Cleartext-Password := "def"

jean Cleartext-Password := "ghi"

DEFAULT Auth-Type := Reject
 Reply-Message = "No way! Unknown user."

This will be dynamically substituted by
the value of the User-Name attribute

Every user will have a personnalized
welcome message including his own login

For the users who connect to
ports 1 to 12 on switch 7, the

access will be limited to the Web

And on ports 13 to 24, the
access will be limited to VoIP

If this rule is reached, it means that the
user is unknown: we reject him, and

overwrite the reply message defined above

vendredi 21 janvier 2011

Translations
• The syntax %{attribute} is dynamically substituted (this

is called translation or xlat) by the value of the attribute

➡ Example : "abc%{User-Name}def" will be
translated to "abcjoedef" for user joe

• This should not be confused with the ${variable} syntax
that we saw earlier, which is only expanded upon startup

• You may also use: "%{%{attribute}:-default_value}"
which is translated to the value of the attribute, or to the
string "default_value" if the attribute is not defined

• You may use this syntax recursively, for example:
"%{%{Stripped-User-Name}:-%{%{User-Name}:-unknown}}"

Will be translated to the value of Stripped-User-Name or, if it is
undefined, to the value of User-Name or, if it is undefined, to unknown

vendredi 21 janvier 2011

• Some modules offer an xlat function which can be called with the
following syntax: %{module_name:parameters}

• Modules sql, ldap, expr, exec and perl have an xlat function.
Here are a few examples:

• %{sql:select credit from credits where login='%{User-Name}'}

• %{ldap:ldap:///dc=company,dc=com?uid?sub?uid=%u}

• %{expr:2*%{Session-Timeout}+10}

• %{exec:/usr/bin/mon_prog %{User-Name} %{Session-Timeout}}

• %{perl:%{User-Name} %{Session-Timeout}}

• The parameters can themselves contain substitutions: the module
evaluates the translation (possibly by calling another module’s xlat
function) then escapes the result if necessary. For example, if the
User-Name is joe's, then the sql module will substitute %{User-
Name} by joe=27s (MIME encoding) before running the SQL query.

Translations

Calls a personnali-
zable perl function

vendredi 21 janvier 2011

The huntgroups
• A huntgroup is a set of locations and/or connection ports (the

preprocess module must be activated in order to use huntgroups)

• You may then filter on locations and ports in the users file by
applying a condition like Huntgroup-Name == "..."

• Huntgroups are defined in /etc/freeradius/huntgroups

• For example:

switch7_ports_1_to_12 NAS-IP-Address == 10.4.3.2, NAS-Port-Id == 1-12

switch7_ports_13_to_24 NAS-IP-Address == 10.4.3.2, NAS-Port-Id == 13-24

switchs_1_to_3 NAS-IP-Address == 10.4.3.2

switchs_1_to_3 NAS-IP-Address == 10.4.3.3

switchs_1_to_3 NAS-IP-Address == 10.4.3.4

ports_voip NAS-IP-Address == 10.4.3.2, NAS-Port-Id == 13-24

ports_voip NAS-IP-Address == 10.4.3.3, NAS-Port-Id == 1,3-7,9

ports_voip NAS-IP-Address == 10.4.3.4, NAS-Port-Id == 1,10-15

A huntgroup can be composed
of multiple NASes

Or even multiple sets of
ports on different NASes

vendredi 21 janvier 2011

The hints

DEFAULT Suffix == ".ppp", Strip-User-Name = Yes
 Hint = "PPP",
 Service-Type = Framed-User,
 Framed-Protocol = PPP

• The preprocess module also allows you to define hints: these are
prefixes or suffixes that the user can add to his login in order to
indicate what service he wishes

• They are defined in /etc/freeradius/hints using a format
identical to that of file /etc/freeradius/users

• For example:

• In this example, if the User-Name attribute ends with ".ppp" then
the attributes Hint, Service-Type and Framed-Protocol will
be added to the request internal list

The User-Name attribute will be modified
in the request to remove the «.ppp» suffix

Warning: unlike the users file, the hints
file will modify the request!

vendredi 21 janvier 2011

Let’s continue...
The request had gone through the preprocess

module, and was now being handled by the files
module in the authorize section

vendredi 21 janvier 2011

files module
request control reply

Find NAS by IP Msg-Authenticator=...

User-Password=G!5#%d

User-Name=alain

...

Authorization
authorize {
 preprocess
 files
 pap
}

Parse request
attributes

files

Cleartext-Password=abc Reply-Message=Hi alain!

+

Filter-ID=web_only

...

authorize

This module applies
the rules defined in the
users file to add or

modify attributes

vendredi 21 janvier 2011

Rejecting a user
request control reply

Find NAS by IP Msg-Authenticator=...

User-Password=G!5#%d

User-Name=alain

...

Authorization
authorize {
 preprocess
 files
 pap
}

Parse request
attributes

files

Reply-Message=No!

If a module returns reject, then
freeRADIUS stops the request handling and

returns an Access-Reject

authorize

vendredi 21 janvier 2011

pap module
request control reply

Find NAS by IP Msg-Authenticator=...

User-Password=G!5#%d

User-Name=alain

...

Authorization
authorize {
 preprocess
 files
 pap
}

Parse request
attributes

pap

This module adds
Auth-Type=pap if the

User-Password attribute
is defined...

Cleartext-Password=abc Reply-Message=Hi alain!

+

...unless
Auth-Type is

already set

Auth-Type=pap Filter-ID=2

...

authorize

vendredi 21 janvier 2011

Autz-Type subsection
• In the authorize section, subsections named «Autz-

Type XXX» may be defined

• The authorize section is first executed without those
subsections

• If the Autz-Type attribute is defined after the execution
of the authorize section, and if the user was not
rejected, then the Autz-Type subsection corresponding
to the value of the Autz-Type attribute is executed alone

• This allows a specific authorization policy to be chosen
dynamically

Autz-Type = Authorization Type
Auth-Type = Authentication Type

vendredi 21 janvier 2011

Authentication

Authentication
request control reply

Msg-Authenticator=...

User-Password=G!5#%d

User-Name=alain

...

authenticate {
 Auth-Type PAP {
 pap
 }
}

Cleartext-Password=abc Reply-Message=Hi alain!

Auth-Type=pap

If the Auth-Type attribute is defined
and if a corresponding subsection is

defined, then it is executed (alone), or else
the authenticate section is executed

(without its subsections).

/etc/freeradius/sites-enabled/default

NAS lookup +
parsing

Authorization

Filter-ID=2

...

vendredi 21 janvier 2011

pap module (again)
request control reply

Msg-Authenticator=...

User-Password=G!5#%d

User-Name=alain

...

authenticate {
 Auth-Type PAP {
 pap
 }
}

Cleartext-Password=abc Reply-Message=Hi alain!

Auth-Type=pap

pap

Decipher the
User-Password

and check the
password

Filter-ID=2

...

authenticate

Authentication

NAS lookup +
parsing

Authorization

vendredi 21 janvier 2011

Response at last!
request control reply

Msg-Authenticator=...

User-Password=G!5#%d

User-Name=alain

...

Cleartext-Password=abc

Auth-Type=pap

Authentication

Reply-Message=Hi alain!

Filter-ID=2

...

NAS lookup +
parsing

Authorization
If all the modules

answered «ok», then Accept-
Accept, or else Accept-

Reject

Same, but generally
only one module is

executed

vendredi 21 janvier 2011

Authentication data

• Depending on the chosen authentication method, different types of
data are sent by the NAS to the RADIUS server, for example:

• PAP : user password ciphered using the RADIUS secret

• CHAP : MD5 hash of the password + challenge + CHAP-ID

• EAP/MD5 : similar to CHAP

• TTLS/PAP : user password ciphered within a TLS tunnel

• PEAP/MS-CHAP-v2 : hash of a NT hash within a TLS tunnel

• EAP/TLS : user’s TLS certificate

• ...

vendredi 21 janvier 2011

Password verification
• If you enter the users’ cleartext passwords in the users file

(example: Cleartext-Password:="a3d$G4") then freeRADIUS
can check user passwords easily:

• for PAP and TTLS/PAP: the received ciphered password is
deciphered and simply compared to the cleartext password
available in the users file

• for CHAP and EAP/MD5: freeRADIUS calculates the MD5 hash of
the user’s password from the users file + the received challenge
and CHAP-ID, and compares the result to the received MD5 hash

• for PEAP/MS-CHAP-v2: freeRADIUS applies the MS-CHAP-v2
algorithm to calculate the appropriate hash using the user’s
password from the users file and the data received in the
RADIUS request (MS-CHAP-v2 challenge), and compares the
result to the received hash

vendredi 21 janvier 2011

Cleartext password?

For trivial security reasons, it
is strongly recommanded not

to store the users’
passwords in cleartext

vendredi 21 janvier 2011

Password storage
• In the users file, it is possible to store a hash of each password

instead of the cleartext passwords:

• Crypt-Password : Unix crypt password

• MD5-Password : MD5 hash

• SMD5-Password : MD5 hash of the password + salt

• SHA-Password : SHA1 hash

• SSHA-Password : SHA1 hash of the password + salt

• NT-Password : Windows NT hash

• LM-Password : Windows Lan Manager hash

vendredi 21 janvier 2011

Hash incompatibilities
• Unfortunately, a hash is by definition a one-way function, meaning that

it is impossible to guess the password if you know only its hash
(unless you try all possible passwords)

• Therefore, if you store the SHA1 hash of the users’ passwords, you
will not be able to use the CHAP authentication method, for
example, because freeRADIUS will have no way of knowing if the
SHA1 hash stored in the users file and the received MD5 hash have
been calculated from the same password or not

• As a matter of fact, since the MD5 hash that is transmitted when using
the CHAP authentication method is not a hash of the user’s password
alone (but a hash of the password plus a challenge and a CHAP-ID),
you cannot use CHAP authentication if you chose to store MD5
hashes of the user passwords!

vendredi 21 janvier 2011

Compatibility table
• The following table shows, for each authentication method, the

compatible password storage formats:

Clear Crypt MD5 SHA1 SMD5 SSHA1 NT LM

PAP Yes Yes Yes Yes Yes Yes Yes Yes

CHAP Yes No No No No No No No

EAP/MD5 Yes No No No No No No No

TTLS/PAP Yes Yes Yes Yes Yes Yes Yes Yes

PEAP/MS-CHAP-v2 Yes No No No No No Yes Yes

Method
Storage

vendredi 21 janvier 2011

Safe methods?
If a hacker gets access to the exchanges between the NAS and the RADIUS
server, then not only will he have access to the unciphered data of the
RADIUS packets, but he can go further, depending on the authentication
method used:

• The PAP method is quite unsafe, because it is both vulnerable to
offline dictionary attacks and to replay attacks

➡Offline dictionary attack: a hacker enters a random password, then
captures the corresponding RADIUS exchange. He can then try
millions of RADIUS secrets until he finds one that produces the
same ciphered password. Since he now has the RADIUS secret, he
can decipher all the passwords from then on.

➡ Replay attack: the hacker captures a successful RADDIUS exchange
and simply repeats it later on. He can connect with someone else’s
identity (without having to know his password).

vendredi 21 janvier 2011

Safe methods?
• The CHAP method is also vulnerable to offline dictionary attacks and

replay attacks. But when the hacker manages to find the RADIUS
secret, he can only decipher the passwords of users who use the PAP
method (and he can also decipher all attributes that were ciphered
using the RADIUS secret).

• The EAP/MD5 method has the same issues as CHAP.

• Methods that rely on a TLS tunnel are immune to offline dictionary
attacks and replay attacks: they are therefore much safer.

• Their only problem is that they require the user to check the server’s
certificate... and many users simply don’t bother to do so.

It is safer to use PEAP or TTLS

vendredi 21 janvier 2011

EAP/TLS, EAP/SIM, EAP/GTC
• The EAP/TLS does not transmit any password: during authentication,

the user checks the server’s certificate, and the server checks the
user’s certificate

➡ This method is immune to offline dictionary attacks, as well as online
dictionary attacks (since no password is exchanged) and it is also
immune to replay attacks. It is therefore even safer than PEAP and
TTLS...

➡ ...but it is a bit tedious to implement because a TLS certificate needs
to be installed on every user’s system

• A higher degree of security can still be achieved using security cards,
because the user possesses both a physical object (the card) and a
secret (the PIN code): this is called a dual-factor authentication (2FA).
This requires a complex hardware and software infrastructure, hence
this solution is usually limited to telco operators and large enterprises.
For security cards, the EAP method used is either EAP/SIM (for telco
operators) or EAP/GTC (for other security cards)

vendredi 21 janvier 2011

Compatibility table
• Let’s amend the compatibility table, for more security:

Clear Crypt MD5 SHA1 SMD5 SSHA1 NT LM

PAP Oui Oui Oui Oui Oui Oui Oui Oui

CHAP Oui Non Non Non Non Non Non Non

EAP/MD5 Oui Non Non Non Non Non Non Non

TTLS/PAP Oui Yes Yes Yes Yes Yes Yes Yes

PEAP/MS-CHAP-v2 Oui No No No No No Yes Yes

Method
Storage

Unsafe methods

U
n

sa
fe

 s
to

ra
ge

vendredi 21 janvier 2011

Module return codes
Up to now, we have assumed that a module either answered
«success» or «failure», and in case of a failure, the request
handling process would stop immediately. In fact, each module can
return any one of the following codes:

Code Meaning Action
notfound User was not found Continue

noop Module is not applicable (it did nothing) Continue

ok User accepted Continue

updated User accepted and attribute list updated Continue

fail Module failed (ex: database access failure) Stop + Reject

reject User rejected Stop + Reject

userlock User rejected because his account is locked Stop + Reject

invalid User rejected because his configuration is invalid Stop + Reject

handled Module handled the request and its response (if any) Stop + nothing

vendredi 21 janvier 2011

Return codes priorities
• What should be done, for example, if a module answers noop

in the authorize section, then the following module answers
notfound, and the last module in the section answers noop?
Logically, the result of the authorize section will be
notfound (and freeRADIUS will reject the user).

• If one of those modules had answered ok, the result of the
section would have been ok (and freeRADIUS would have
continued on with the request handling process in the
authenticate section)

• In conclusion, if no module returns an immediate failure, then a
priority scale has to be applied between the module return
codes in order to determine what the result of the section is

• By default, the priority scale is:
updated > ok > notfound > noop

vendredi 21 janvier 2011

Return codes priorities
The following table indicates the default level of priority for each
possible return code. The return priority indicates that the
section will immediately stop if the corresponding code is returned.

Code Meaning Priority
notfound User was not found 1

noop Module is not applicable (it did nothing) 2

ok User accepted 3

updated User accepted and attribute list updated 4

fail Module failed (ex: database access failure) return

reject User rejected return

userlock User rejected because his account is locked return

invalid User rejected because his configuration is invalid return

handled Module handled the request and its response (if any) return

vendredi 21 janvier 2011

Modifying priorities
• In some cases, the default priorities need to be modified

• For example, one might want to stop immediately if a module
answers ok

• To do this, simply append a section to the module name, and set the
desired priorities in that section, for example:

authorize {
 preprocess
 sql {
 ok = return
 updated = return
 }
 ldap
}

authorize {
 preprocess
 sql
 ldap
}

• In this example, if the sql module returns ok (or updated), then
the authorize section will stop immediately and will itself return
ok (or updated): the ldap module will not be called

vendredi 21 janvier 2011

Grouping modules
• Multiple modules may be grouped in a group section

• Modules in a group are called one after the other, each one returning
a code, and the return code with the highest priority is returned by
the group itself (the group handling process is interrupted if a
module’s code has a return priority level)

• This can be useful to implement a fail-over mechanism between
modules, for example:

authorize {
 preprocess
 group {
 sql_primary {
 fail = 1
 default = return
 }
 sql_backup
 }
 ldap
}

authorize {
 preprocess
 sql_primary
 ldap
}

The sql_backup
module will only be
called if the primary
server is unreachable

vendredi 21 janvier 2011

Group priorities
• You can also modify the priority rules for the return code

of the group itself

• For example, imagine you don’t want to query the LDAP
server if either the primary or the secondary SQL server
has answered ok (or updated):

authorize {
 preprocess
 group {
 sql_primary {
 fail = 1
 default = return
 }
 sql_backup
 ok = return
 updated = return
 }
 ldap
}

authorize {
 preprocess
 sql_primary {
 ok = return
 updated = return
 }
 ldap
}

vendredi 21 janvier 2011

redundant sections
• For fail-over, it is generally simpler to use a redundant section

instead of a group section

• It’s the same thing, except that the default priority rules in a
redundant section are fail = 1 and default = return

authorize {
 preprocess
 redundant {
 sql_primary
 sql_backup1
 sql_backup2

 fail = return
 ok = return
 updated = return
 }
 ldap
}

authorize {
 preprocess
 group {
 sql_primary {
 fail = 1
 default = return
 }
 sql_backup1 {
 fail = 1
 default = return
 }
 sql_backup2

 ok = return
 updated = return
 }
 ldap
}

vendredi 21 janvier 2011

Load balancing
• To load-balance requests between multiple modules (for example to

hit three different database servers), simply use a load-balance
section:

authorize {
 preprocess
 load-balance {
 sql1
 sql2
 sql3
 }
}

• One of the modules is chosen randomly and executed, and its result is
returned by the load-balance section itself (even if the module
returns fail)

• If you want to fallback to one of the remaining modules in case a
module returns fail, then you should use a redundant-load-
balance section: the section only fails if all its modules fail

vendredi 21 janvier 2011

The unlang «langage»
• Before version 2 of freeRADIUS, if you wanted to express a condition

in the configuration of the request handling policy, you generally had
no other option than to write your own module

• Now, if you need to express relatively simple conditions, you may do
so using if, else, elsif, etc., for example:

authorize {
 preprocess
 if (User-Name == "joe") {
 ldap1
 }
 elsif (User-Name == "jack") {
 ldap2
 }
 else {
 sql
 }
}

In this example, if the request concerns
user joe, then use the ldap1 module, or
else if it’s jack, then use module ldap2,
or else use the sql module (for all other
users).

Note: a load-balance or redundant-
load-balance section must not contain
any else or elseif subsection. A
redundant section must not contain if,
else or elseif sections at all.

vendredi 21 janvier 2011

• The unlang language is not a full-featured language, and does aim at
becoming one (hence its name): its only goal is to express simple rules
(if you need some complex logic, you need to write a module, see
later)

• The condition of an if section can be:

• (attribute operator value)

• (value)

• (return_code)

• Just like in the C language, you may use !a to express «not a»,
a && b for «a and b», and a || b for «a or b»

• You may nest conditions, for example: (a && !(b || c))

Example:
(Session-Timeout >= 3600)

True if the value is not null or empty, for example:
(Idle-Timeout) or ("%{Idle-Timeout}")

True if the last called module
returned this code, ex: (fail)

The unlang «langage»

vendredi 21 janvier 2011

• You may also use the switch / case statement, very much like in the
C language:

authorize {
 preprocess
 switch "%{User-Name}" {
 case "joe" {
 ldap1
 }
 case "jack" {
 ldap2
 }
 case {
 sql
 }
 }
}

This is the default (fallback) section

This string may contain xlats...

...but the values in case statements may not

• This example will have the same result as the one we saw earlier with
the if, elsif and else instructions

The unlang «langage»

vendredi 21 janvier 2011

• By default, attributes are looked up in the request list

• You may specify another internal list using the following syntax:
%{list:attribute} for example %{control:Auth-Type}

• So far we have talked about the request, control and reply lists,
but there are a few other lists:

• proxy-request and proxy-reply contain the attributes
that are sent to or received from a Home-Server, when
freeRADIUS acts as a Proxy-Server

• outer.request, outer.reply, outer.control,
outer.proxy-request, and outer.proxy-reply allow
you to access the attribute lists of the outer EAP request during
the handling of the inner EAP request of a PEAP or TTLS tunnel

The unlang «langage»

vendredi 21 janvier 2011

• A few other xlat options exist:

• %{#string}: length of the string

• %{attribute[n]}: (n+1)th attribute of this type

• %{attribute[#]}: number of attributes of this type

• %{attribute[*]}: all values of attributes of this type,
separated by line feeds (\n) and grouped into one string

• %{0}: the string identified by the last regular expression
(with =~ or !~)

• %{1}, %{2}, ..., %{8}: the groups identified by the last
regular expression

• However, should you need this level of complexity, you probably
should consider writing a module instead (in python, perl or C, as
we will se later)

The unlang «langage»

vendredi 21 janvier 2011

• You may also define an update section, which allows you to
update an attribute list very simply, for example:

update reply {
 Reply-Message := "Bonjour %{User-Name}"
 Session-Timeout <= 3600
 Filter-Id !* ALL
}

• All the lists can be modified (request, control...)

• The =, := and += operators have the same meaning as described
earlier, and you may also use the following operators:
-= : deletes all attributes of this type with the given value
== : deletes all the attributes of this type, except those with the given value
!* : deletes all attributes of this type (whatever the given value)
<= : replaces the values greater than the given value with that value (integer attributes only)
>= : replaces the values lower than the given value with that value (integer attributes only)

For the <= and >= operators, the attribute is added with the given value if it does not exist

The unlang «langage»

vendredi 21 janvier 2011

always module
• The always module always returns the same code, which is

configurable. Here’s the default configuration for this module:
always fail {
 rcode = fail
}
always reject {
 rcode = reject
}
always noop {
 rcode = noop
}
always handled {
 rcode = handled
}
always updated {
 rcode = updated
}
always notfound {
 rcode = notfound
}
always ok {
 rcode = ok
 simulcount = 0
 mpp = no
}

authorize {
 preprocess
 if (User-Name=="bad-guy") {
 reject
 }
 ...
}

Here’s an example that uses the
reject variant of the always

module

vendredi 21 janvier 2011

policy.conf
• If the same piece of unlang code needs to be used in several

places, it is best to define a section containing that code in the
policy section located in /etc/freeradius/policy.conf,
for example:

policy {
 add_welcome_message {
 update reply {
 Reply-Message := "Hello %{User-Name}"
 }
 }
}

• This «function» can then be used elsewhere in the configuration:

authorize {
 preprocess
 add_welcome_message
 ...
}

vendredi 21 janvier 2011

policy module

• Another module, named policy, offers a similar
functionality, although somewhat more limited

• WARNING: this module has nothing to do with the
policy.conf file that we have just seen

• It is now preferrable to use policy.conf, and simply
ignore the policy module

• Note: the policy module relies on a configuration file
which can also be ignored:
/etc/freeradius/policy.txt

vendredi 21 janvier 2011

Default policy

• The default request handling policy is
defined in
/etc/freeradius/sites-enabled/default

• It’s just a symbolic link to the file
/etc/freeradius/sites-available/default

• This file includes the previously described
sections: authorize and authenticate, as
well as other similar sections...

vendredi 21 janvier 2011

Other modules sections
There are a few other sections that call modules in
much the same way as the authorize and
authenticate sections:

• session: if the Simultaneous-Use attribute is added
to the control list (for example by the files module
during the authorize phase), then the modules listed in
the session section will make sure that the maximum
number of sessions currently opened by the user is lower
than the value of this attribute, and reject the user if the
number is reached

• post-auth: actions to be executed after
authentication

vendredi 21 janvier 2011

• If a request is rejected at any moment during the
authorize or authenticate phases, then the ‘Post-
Auth-Type REJECT’ subsection of the post-auth section
will be run

• This is often used to add attributes in the Access-Reject
response

✦ for example to add a Reply-Message attribute
containing an error message that the NAS can then
display to the user

Other modules sections

vendredi 21 janvier 2011

Two modules sections are executed when hanlding an
Accounting-Request :

• preacct: list of modules executed before accounting

• accounting : list of modules that handle the
accounting itself

Other modules sections

vendredi 21 janvier 2011

Other modules sections

And finally two modules sections are executed by the
freeRADIUS server, before and after a packet is proxied to a
Home-Server, in a roaming context:

• pre-proxy: modules executed before proxying a packet

• post-proxy: modules executed when the response is
received from the Home-Server

vendredi 21 janvier 2011

Virtual servers
All the policy sections that we have seen may
also be defined inside a named server section
‘server virtual_server_name’:

server ldap-policy {
 authorize {
 preprocess
 ldap
 }
 authenticate {
 Auth-Type LDAP {
 ldap
 }
 }
 ...
}

This is called a «virtual server»
vendredi 21 janvier 2011

Virtual servers

• Multiple virtual servers may be defined,
each one with its own request handling
policy

• Each virtual server is usually configured in
its own file in the sites-available
directory...

• ...and symbolic links must be created in the
sites-enabled pointing to the virtual
server files that you want to enable

vendredi 21 janvier 2011

Virtual servers
Once the virtual servers are defined, freeRADIUS may be
configured to dynamically select the appropriate virtual
server for each request (in other words, it may select
dynamically which policy must be applied), depending on:

• the IP address and UDP port where the packet was
received: in the corresponding listen section, simply
add virtual-server=virtual-server-name

• the NAS that sent the request, by adding the same
statement in the appropriate client section

• the Home-Server to which the packet is proxied, in
case of roaming, again with the same statement in the
Home Server’s configuration (may be useful to define
pre-proxy and post-proxy sections specific to each
roaming partner)

vendredi 21 janvier 2011

Organization
• The configuration lives in files located in

/etc/freeradius and its subdirectories (on other systems
than Debian, it lives in /etc/raddb)

• For this presentation, we will cut the configuration in five
parts:

• Configuration of the RADIUS dictionary

• Basic configuration of the server

• Request management policies configuration

• Modules configuration

• Roaming configuration

vendredi 21 janvier 2011

OR

Modules configuration
• Apart from a few exceptions (eap.conf, sql.conf...),

the configuration of all modules is located in the files of
the /etc/freeradius/modules directory

• The configuration has the following format:

module_name another_name {
 a_param = 23
 another_param = "blabla"
 ...
}

• If you specify another_name, it is this name that must
be used in the rest of the configuration

module_name {
 a_param = 23
 another_param = "blabla"
 ...
}

vendredi 21 janvier 2011

Modules configuration
• For example, here’s the files module’s config:

files {
 # The default key attribute to use for matches. The content
 # of this attribute is used to match the "name" of the
 # entry.
 #key = "%{Stripped-User-Name:-%{User-Name}}"

 usersfile = ${confdir}/users
 acctusersfile = ${confdir}/acct_users
 preproxy_usersfile = ${confdir}/preproxy_users

 # If you want to use the old Cistron 'users' file
 # with FreeRADIUS, you should change the next line
 # to 'compat = cistron'. You can the copy your 'users'
 # file from Cistron.
 compat = no
}

/etc/freeradius/modules/files

vendredi 21 janvier 2011

Modules configuration
• Another example, here’s the realm module’s config:

realm suffix {
 format = suffix
 delimiter = "@"
}

realm realmpercent {
 format = suffix
 delimiter = "%"
}

/etc/freeradius/modules/realm

• You may use those two variants of the realm
module in the rest of the configuration, by using
the names suffix and realmpercent

vendredi 21 janvier 2011

Modules configuration
• The configuration of some modules may be organized

in subsections in order to group related parameters,
for readability

• For example, the subsection tls in the ldap module:

ldap {
 server = "ldap.example.com"
 identity = "cn=admin,dc=example,dc=com"
 ...
 tls {
 start_tls = no
 cacertfile = /path/to/cacert.pem
 ...
 }
 ...
}

/etc/freeradius/modules/ldap

vendredi 21 janvier 2011

EAP configuration
• EAP configuration is also organized in subsections:

eap {
 default_eap_type = md5
 timer_expire = 60
 ...
 md5 {
 }
 ...
 tls {
 certdir = ${confdir}/certs
 cadir = ${confdir}/certs
 ...
 }
 ...
 peap {
 default_eap_type = mschapv2
 copy_request_to_tunnel = yes
 use_tunneled_reply = no
 # proxy_tunneled_request_as_eap = yes
 virtual_server = "inner-tunnel"
 }
 mschapv2 {
 }
}

/etc/freeradius/eap.conf

If this parameter is defined, then
the inner EAP requests will be

handled by the given virtual
server, or else it will be the same
virtual server that handled the

external EAP dialog

TLS configuration is required for
EAP/TLS, PEAP and TTLS

Some submodules (such as md5) have no configuration, but
you need to add a section if you want to enable them

This is one of the rare modules whose configu-
ration is not located in the modules directory

vendredi 21 janvier 2011

Modules instantiation
• When freeRADIUS starts up, it parses the configuration

files and determines the list of all the modules that can
possibly be used

➡ Oddly enough, it ignores the modules that are used in
the translations (for example: %{expr:2+3})

• It creates an instance of each of those modules, and calls
their initialization function

• If you want to specify the order of the instantiation, or to
load extra modules (such as the ones used only in
translations), simply list those modules in the
instantiate section of radiusd.conf:

instantiate {
 exec
 expr
 sql
}

vendredi 21 janvier 2011

Here’s an example where using the instantiate
section is compulsory:

• The sql module may be configured to load the list
of NASes from the nas database table (this list is
added to the list loaded from clients.conf)

• This happens during the module’s instantiation

• If you want to use the database only to manage the
NAS list, then you must add the sql module to the
instantiate section, since it will not be used
elsewhere

Modules instantiation

vendredi 21 janvier 2011

Virtual modules
• If you define a named section in the instantiate section,

then it is considered as the definition of a «virtual module»,
for example:

instantiate {
 ...
 redundant redundant_sql {
 sql1
 sql2
 sql3
 }
}

• You can achieve the same result using policy.conf instead,
as we have seen earlier

• You may use a virtual module anywhere in the configuration,
just like a regular module:

authorize {
 preprocess
 redundant_sql
}

vendredi 21 janvier 2011

Change of Authorization (CoA)
• The RADIUS protocol did not initially define any mechanism to allow

you to ask a NAS to disconnect a user, or to ask a NAS to change a
connected user’s access rights

• In RFC 3576, two new types of RADIUS requests were defined for
this: type disconnect to disconnect a user, and type coa to change
a user’s authorizations (when we speak of CoA in a general sense, we
mean both types of requests)

• Warning: with CoA, the NAS is actually acting as a server, and anyone
can act as a client, as long as he shares a secret with the NAS

• For example, here’s how to send a request to the NAS at IP address
10.2.3.4, port 1812, to disconnect user alain:

echo 'User-Name=alain' | radclient 10.2.3.4:1812 disconnect "s9$G...s!df"

secrettypeIP port
You may send an

Attribute=Value pair per line

vendredi 21 janvier 2011

CoA from freeRADIUS
• Although the CoA requests may be sent by anyone, it is sometimes

useful to have the freeRADIUS server send them, for example:

• If you want to disconnect a user from one NAS when he
connects to another NAS

• If you want to have freeRADIUS send a coa request to the
user’s NAS if it notices that the user’s rights have changed
(when handling an Interim-Update, for example)

• If you want to be able to send a request to freeRADIUS so
that it finds the NAS that a user is connected to and sends a
CoA request to that NAS

• Note: freeRADIUS cannot (yet) receive CoA requests, and cannot
proxy CoA requests from a Home-Server to a NAS

vendredi 21 janvier 2011

CoA from freeRADIUS

• CoA is not supported by many NASes

• Its configuration in freeRADIUS is still young
and may change in future versions

• For more info, read:
 /etc/freeradius/sites-available/originate-coa

vendredi 21 janvier 2011

Organization
• The configuration lives in files located in

/etc/freeradius and its subdirectories (on other systems
than Debian, it lives in /etc/raddb)

• For this presentation, we will cut the configuration in five
parts:

• Configuration of the RADIUS dictionary

• Basic configuration of the server

• Request management policy configuration

• Module configuration

• Roaming configuration

vendredi 21 janvier 2011

Roaming example
• Reminder: when acting as a proxy-server in a roaming

scenario, freeRADIUS proxies some requests to one or
more Home-Servers

• To know which requests must be proxied, and which
Home-Server they must be proxied to, the preferred
solution is usually to base the decision on the User-Name

• For example, you can configure freeRADIUS to make it
proxy requests whose User-Name is joe%foo.com to
the RADIUS server at rad1.foo-telecom.net.

• In our example, we will proxy requests to a secondary
server if the primary server is down

vendredi 21 janvier 2011

Identifying the realm

• The first step is to identify requests that must be
proxied to a Home-Server

• To do this, freeRADIUS looks for the Realm attribute
in the control list, after the authorization phase

• If this attribute exists, then the packet is proxied to
the Home-Server (or one of the Home-Servers)
configured for the given realm

• The realm module is generally used to set the Realm
attribute during the authorization phase, based on a
prefix or suffix found in the User-Name attribute

vendredi 21 janvier 2011

The realm module

• As we have seen earlier, the default configuration of the realm
module defines the realmpercent variant

• In our example, we just need to add the realmpercent
module to the authorize section, and the user’s realm will be
identified as the part of the User-Name after the % character

• When the server receives a request from joe%foo.com, the
realmpercent module will add the Realm attribute in the
control list, set to «foo.com», during the authorization phase

• This module will also add the Stripped-User-Name attribute
in the control list, set to «joe»

vendredi 21 janvier 2011

proxy.conf

• The heart of the roaming configuration is located in
proxy.conf

• This file is composed of multiple sections:

• a proxy server section for general roaming settings

• a home_server section for each Home-Server

• one or more home_server_pool sections that allow you
to define rules to load-balance requests between several
Home-Servers

• One or many realm sections that indicate which
home_server_pool must be used for each realm

vendredi 21 janvier 2011

proxy.conf
• Here’s an example of proxy.conf configuration:

proxy server {
 default_fallback = no
}
home_server rad1_foo_telecom {
 type = auth
 ipaddr = 212.3.4.5
 port = 1812
 secret = testing123
 require_message_authenticator = yes

 response_window = 20
 zombie_period = 40

revive_interval = 120

 status_check = status-server
 check_interval = 30
 num_answers_to_alive = 3
}
home_server rad2_foo_telecom
 type = auth
 ...
}
... # follows: home_server_pools and realms

Primary Home-Server config

Secondary Home-Server config

This is the only parameter that can be defined
in this section (we’ll come back to it later)

vendredi 21 janvier 2011

proxy server {
 default_fallback = no
}
home_server rad1_foo_telecom {
 type = auth
 ipaddr = 212.3.4.5
 port = 1812
 secret = testing123
 require_message_authenticator = yes

 response_window = 20
 zombie_period = 40

revive_interval = 120

 status_check = status-server
 check_interval = 30
 num_answers_to_alive = 3
}
home_server rad2_foo_telecom
 type = auth
 ...
}
... # follows: home_server_pools and realms

proxy.conf

These settings can prevent
freeRADIUS from proxying requests

to a dead Home-Server

Does this Home-Server expect a
Message-Authenticator attribute in each

request? If so, freeRADIUS adds it.

auth or acct or auth+acct

The IP address and UDP port where the requests
must be proxied, and the secret shared with this

Home-Server (as far as the Home-Server is
concerned, the proxy-server is just like a regular NAS)

It is preferable to enter an IP address rather
than a host name, because if the DNS request

fails then freeRADIUS cannot start up

vendredi 21 janvier 2011

proxy server {
 default_fallback = no
}
home_server rad1_foo_telecom {
 type = auth
 ipaddr = 212.3.4.5
 port = 1812
 secret = testing123
 require_message_authenticator = yes

 response_window = 20
 zombie_period = 40

revive_interval = 120

 status_check = status-server
 check_interval = 30
 num_answers_to_alive = 3
}
home_server rad2_foo_telecom
 type = auth
 ...
}
... # follows: home_server_pools and realms

proxy.conf

If this Home-Server does not respond during 20s, then it is
considered a zombie (it will only be queried if no Home-
Server is alive). After 40s, the Home-Server is considered

really dead (never queried). If you set
revive_interval=120, then it will be considered alive

again after 2 minutes (even if it is not)...

...but it is preferable to send status requests to
the Home-Server at regular intervals instead: in this
example, we query the Home-Server every 30s and

it takes 3 successive successes to revive it

If we use status requests, then the Home-Server must be configured to handle them,
of course. If it’s a freeRADIUS server, you must create a listen section in its config with

the status type, then set status_server=yes in the security section, and finally
create a virtual server to handle status requests (see sites-available/status)

vendredi 21 janvier 2011

templates {
 home_server {
 response_window = 20
 zombie_period = 40
 revive_interval = 120
 }

 home_server foo-template {
 type = auth
 port = 1812
 secret = "ApQj4...3g2sD"
 response_window = 20
 }
}

templates.conf
• The Home-Servers’ settings are often very similar

• To avoid repetitions, you may define configuration templates:

home_server rad1-bar {
 $template home_server
 ipaddr = 212.3.4.5
 secret = "FRc0...7FL3b8"
}
home_server rad2-bar {
 $template home_server
 ipaddr = 212.3.4.6
 secret = "GDCd...Ml$N3z"
}

home_server rad1-foo {
 template = foo-template
 ipaddr = 212.3.4.7
}
home_server rad2-foo {
 template = foo-template
 ipaddr = 212.3.4.8
}

/etc/freeradius/templates.conf

/etc/freeradius/proxy.conf
vendredi 21 janvier 2011

templates.conf

• Templates can be used in any section in the configuration,
exception subsections (only root sections can use
templates)

• This can be useful, for example, for the definition of the
NASes in clients.conf

• For sub-sections, you can achieve something quite similar
using the $INCLUDE instruction

vendredi 21 janvier 2011

...
home_server_pool foo_telecom_pool {
 type = fail-over
 virtual_server = pre_post_proxy_for_foo
 home_server = rad1_foo_telecom
 home_server = rad2_foo_telecom
}
realm foo.com {
 auth_pool = foo_telecom_pool
 nostrip
}

proxy.conf
• Let’s now focus on the rest of the proxy.conf file:

In this example, we
configure a pool composed
of the two Home-Servers

defined earlier

And finally, we point the
foo.com realm to this pool

All the Home-Servers in a pool
must be have the same type

(auth or acct or auth+acct)

• either use auth_pool (for Home-Servers of type auth)
and/or acct_pool (for Home-Servers of type acct)

• or use pool (for Home-Servers of type auth+acct)
• or finally use no pool at all, in which case the realm is

handled locally (no proxying to Home-Servers)

vendredi 21 janvier 2011

...
home_server_pool foo_telecom_pool {
 type = fail-over
 virtual_server = pre_post_proxy_for_foo
 home_server = rad1_foo_telecom
 home_server = rad2_foo_telecom
}
realm foo.com {
 auth_pool = foo_telecom_pool
 nostrip
}

proxy.conf
This pool’s type is fail-over, meaning that the request
is proxied to the first Home-Server, and if it does not
answer, then the secondary server is called, and so on

By default, if a Stripped-User-Name attribute is present in the control list, then its value
is used for the User-Name attribute in the request that is proxied to the Home-Server.
For example, the Home-Server will receive a request for joe, and not for joe%foo.com.
The nostrip option allows you to specify that you want to keep the original User-Name

(this can be useful if the Home-Server also acts as a proxy server for example).

A virtual server may be set, in which case
its pre-proxy and post-proxy sections
will be executed before the request is

proxied, and after the response is
received from the Home-Server

vendredi 21 janvier 2011

Other types of pools
We have just seen the fail-over pool type, but other types exist:

• load-balance: each request is randomly sent to one of the Home-
Servers (with a preference for the Home-Servers that respond well)

‣ Warning: the EAP authentication methods will probably not
work with this pool type, because they require multiple successive
requests to the same server

• client-balance: also random, but all the requests from a given NAS
are always proxied to the same Home-Server (as long as it is alive)

• keyed-balance: again random, but all the requests that have the same
Load-Balance-Key attribute value will be proxied to the same Home-
Server

➡ A module must therefore add this attribute to the control list, for
example by copying the value of the User-Name attribute (so that all the
requests from a given user will be proxied to the same Home-Server)

vendredi 21 janvier 2011

NULL and LOCAL realms
• If you define a realm named NULL, then it is used for all requests

that do not have a realm

• Many people define a real called LOCAL with no pool (it will
therefore be handled locally): you can then force a requests to be
handled locally by adding the attribute Proxy-To-Realm in the
control list, with its value set to «LOCAL»

• For example, you generally do not want to proxy the content of a
PEAP or TTLS tunnel to another server (for security reasons). To
ensure this, you can add the following 3 lines to the configuration
of the inner-tunnel virtual-server:

update control {
 Proxy-To-Realm := LOCAL
}

vendredi 21 janvier 2011

Virtual Home-Server
• If you define no settings in a home_server section except for the

virtual-server setting, then all requests proxied to this «virtual
Home-Server» will be handled locally by the chosen virtual-server

• For example:

home_server virtual_home_server_for_foo {
 virtual_server = virtual_server_for_foo
}

• This is useful for example to execute some code when all Home-
Servers of a pool have failed:

home_server_pool foo_telecom_pool {
 type = fail-over
 home_server = rad1_foo_telecom
 home_server = rad2_foo_telecom
 home_server = virtual_home_server_for_foo
}

This is a pool of type fail-over, so
rad1 is tried first, and if it fails, then it
tries rad2, and if it fails too, then the

virtual server is called

vendredi 21 janvier 2011

Fallback Home-Servers
• In the configuration of a home_server_pool you can define a fallback

Home-Server, that will be used if all Home-Servers in the pool are dead
(the fallback server is often a virtual Home-Server) :

home_server_pool foo_telecom_pool {
 type = load-balance
 home_server = rad1_foo_telecom
 home_server = rad2_foo_telecom
 fallback = virtual_home_server_for_foo
}

In this example, the load is balanced
between servers rad1 and rad2. If both
servers die, then the pool falls back to
virtual_home_server_for_foo.

• If no fallback server is defined, and if the default_fallback
option is set to yes in the proxy server section, then the
DEFAULT realm is used when all the Home-Servers of a realm
are dead

➡ The DEFAULT realm is often configured with a simple pool containing a single virtual
Home-Server pointing to a virtual server that logs the failure.

vendredi 21 janvier 2011

Filtering attributes
• In a roaming context, it is often necessary to make sure that the

attributes returned by the Home-Server are acceptable, and
remove them if they are not

• This is the role of the attr_filter module. Here’s an extract
of its default configuration:

attr_filter attr_filter.post-proxy {
 attrsfile = ${confdir}/attrs
}
...

/etc/freeradius/modules/attr_filter

• You can add attr_filter.post-proxy in the post-proxy
section: when freeRADIUS will receive a response from a Home-
Server, it will apply the filtering rules defined in:
/etc/freeradius/attrs

• This file specifies, for each realm, which attributes are acceptable,
and with what values: non-compliant attributes are removed

vendredi 21 janvier 2011

foo.com
 Reply-Message =* ANY,
 Session-Timeout <= 86400,
 Idle-Timeout <= 600,
 Acct-Interim-Interval >= 300,
 Acct-Interim-Interval <= 3600

...

The attrs file

• A rule starts with the name of a realm, then a list of conditions to
apply on attributes, each on one line

• The attr_filter module starts by looking for a rule that
matches the packet’s Realm, then it deletes all the attributes that
are not listed in the rule, and also deletes all the attributes that
do not satisfy any of the listed conditions

/etc/freeradius/attrs

• The attrs file is composed of a list of rules, somewhat like the
users file, but with a different rational, for example:

Tab, not
spaces

The condition operators are identical to
those used in the users file, plus the :=
operator (which adds the attribute or
replaces it if it does not already exist)

vendredi 21 janvier 2011

• You may define a DEFAULT rule (only one): it is used if no realm
matches

• You may also add Fall-Through = Yes at the end of a rule to
specify that you also the want the conditions of the DEFAULT
rule to be applied:
low-budget-telecom
 Filter-Id := "limited-service",
 Fall-Through = Yes

DEFAULT
 Login-TCP-Port <= 65536,
 Framed-MTU >= 576,
 Filter-ID =* ANY,
 Reply-Message =* ANY,
 Proxy-State =* ANY,
 EAP-Message =* ANY,
 Service-Type == Framed-User,
 Service-Type == Login-User,
 ...
 Message-Authenticator =* ANY,
 State =* ANY,
 Session-Timeout <= 28800,
 Idle-Timeout <= 600,
 Port-Limit <= 2

/etc/freeradius/attrs

In this example, all the responses
from the Home-Servers of the low-
budget-telecom realm will have the
attribute Filter-Id set to limited-
service (if this attribute already
exists, then its value is replaced),
then the DEFAULT filtering is applied

You may specify multiple authorized
values for an attribute: an attribute is
kept if it matches any condition

The attrs file

vendredi 21 janvier 2011

The attr_filter module may also be used to filter out
attributes in other contexts, using the same principles:

• before a request is proxied to a Home-Server (see the
attrs.pre-proxy file)

• or even outside the context of roaming: for example, attributes
may be filtered out depending on the user (rather than on the
realm) by setting key = %{User-Name} in the attr_filter
module’s configuration

➡ in the rules definition file, instead of specifying the name of a
realm at the beginning of a rule, you would then specify the
name of a user

Filtering attributes

vendredi 21 janvier 2011

Wow! You know everything
about freeRADIUS
configuration files!

In the rest of this presentation, we will detail a few more
useful modules and see how to create new modules

vendredi 21 janvier 2011

Questions?

vendredi 21 janvier 2011

